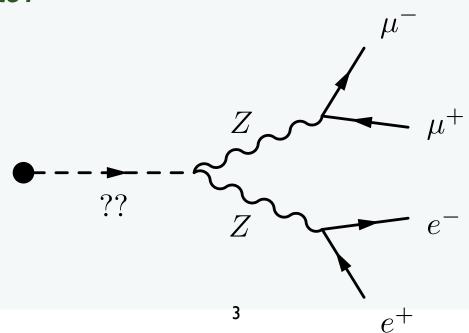
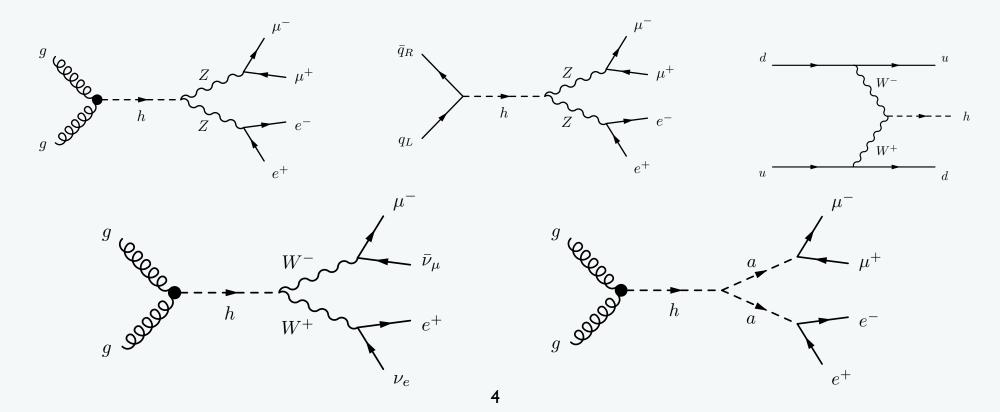

HIGGS LOOK-ALIKES AT THE LHC

Joseph Lykken Fermilab

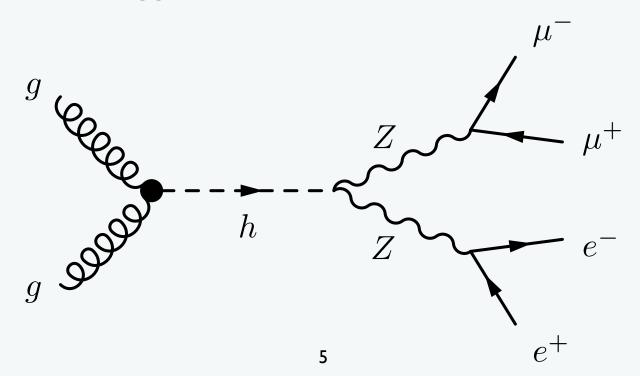
- Alvaro De Rujula, J.L., Maurizio Pierini, Chris Rogan, Maria Spiropulu, arXiv:1001.5300
- Y. Gao, A. Gritsan, Z. Guo, K. Melnikov, M. Schulz, N. V. Tran, arXiv:1001.3396
- Ian Low and J.L., arXiv:1005.0872
- +500 other papers going back 30 years


Higgs look-alikes

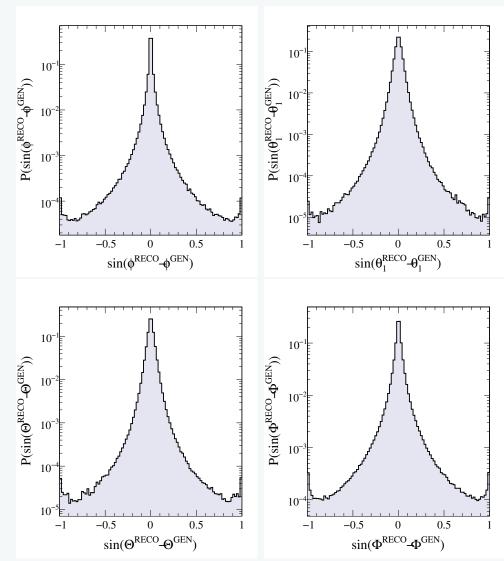
- Suppose your favorite LHC experiment sees a resonant signal with ~10 to 100 signal events
- How do we determine that this is the neutral CP-even spin 0 component of a $(\mathbf{2_L},\ \mathbf{2_R})$ of $\mathbf{SU(2)_L} \times \mathbf{SU(2)_R}$ predicted by the Standard Model, or a look-alike?
- How many Higgs look-alike candidates can you eliminate at or around the time of discovery?


The post-discovery LHC Higgs challenge

- Note that answering this question comes before the eventual precision extraction of the parameters of the Higgs sector (see talks by Tilman Plehn and Tao Han)
- A simpler question: How many Higgs look-alike candidates can you eliminate at or around the time of discovery by looking at distributions and correlations in the 4 lepton final state?


Factorizing the problem

- **☑** Distributions and correlations in the 4 lepton final state
- Production (gluon fusion, VBF, ...)
- Correlations with signals (or lack of signals) in other channels (see talk by lan Low)



The golden Higgs channel at the LHC

- The leptonic decay $h \to ZZ \to 4\ell$ has a small branching fraction but provides a (relatively) clean and fully-reconstructable final state
- The Z bosons don't have to be on shell!
- Relevant for SM Higgs mass above about ~ 130 GeV

ATLAS and CMS can measure the 4-lepton final state with exquisite precision

 $m_{\mu\mu}~[GeV^{100}/c^2]$

So you can choose any basis you want for your 12 observables without losing experimental realism

The 12 observables of the fully reconstructed event

 To get from the lab frame to the Higgs rest frame, I need to specify a boost and the direction of the boost, which is given by two angles:

$$\gamma_{\mathbf{h}}, \theta_{\mathbf{h}}, \phi_{\mathbf{h}}$$

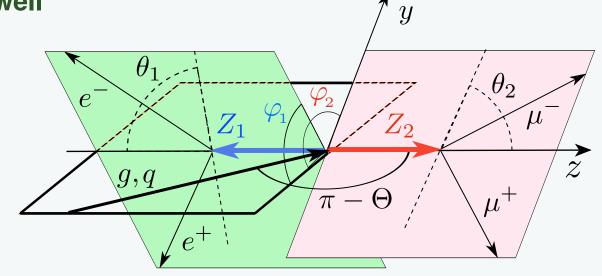
I need to specify the reconstructed Higgs mass

$$M_{
m h}$$

• In the Higgs rest frame, by convention, take the positive z-axis to be along the direction of motion of \mathbb{Z}_2 , then use two angles to specify the direction of one of the incoming partons (note 2-fold ambiguity)

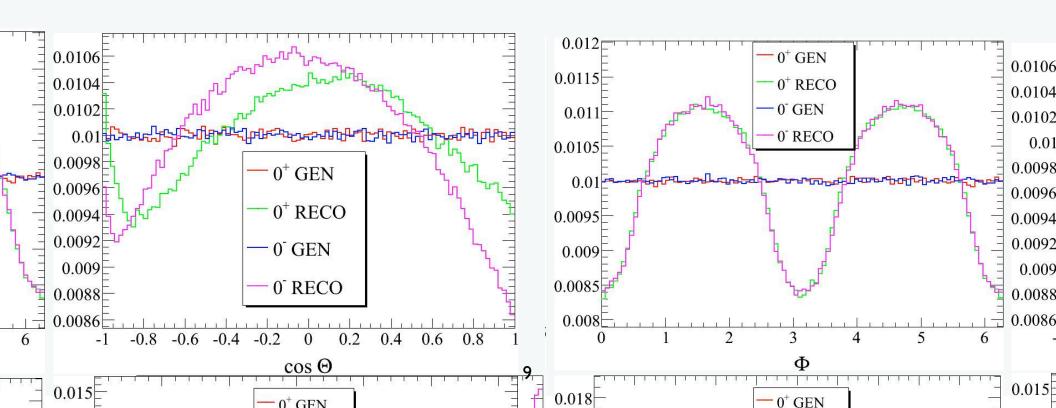
$$\Theta$$
, Φ

• Z decay involves another pair of angles measured in the Z rest frame, with the polar angle measured wrt the z-axis defined above. We also need the two boosts from the Higgs rest frame to the Z rest frames, γ_1, γ_2 , which is equivalent to specifying the (possibly offshell) Z masses:

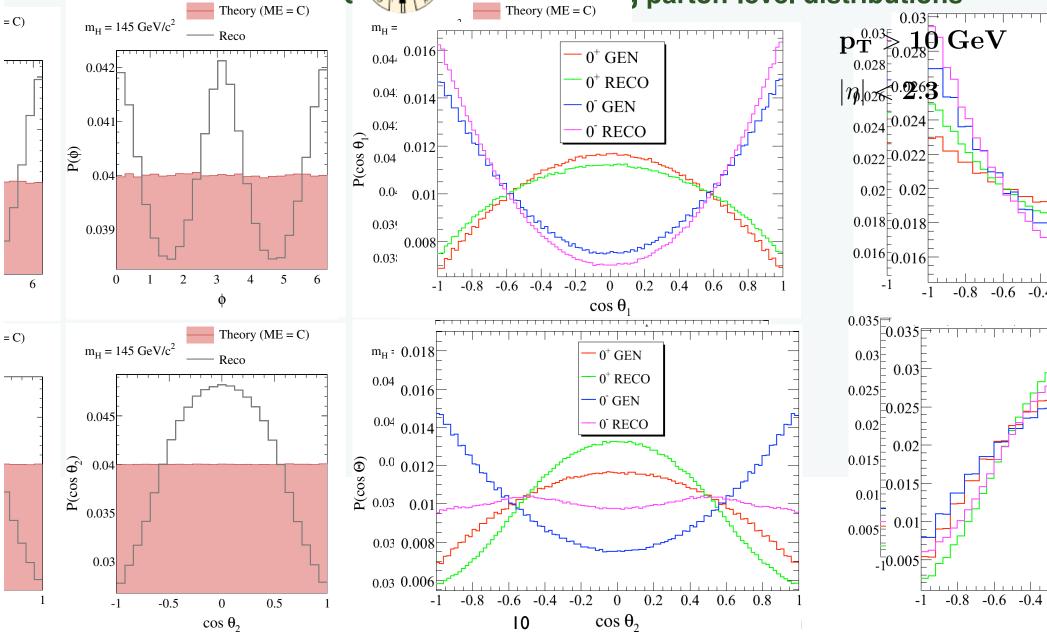

$$\mathbf{m_1}, \theta_1, \phi_1, \mathbf{m_2}, \theta_2, \phi_2$$

8 angles!

- In the spirit of factorization, we will (for now) ignore the two production angles $\theta_{\mathbf{h}}, \, \phi_{\mathbf{h}}$
- If the resonance is a spin 0 particle, the signal distribution will be isotropic (i.e. flat) in the $\,h\to ZZ\,$ angles $\,\Theta,\,\Phi\,$

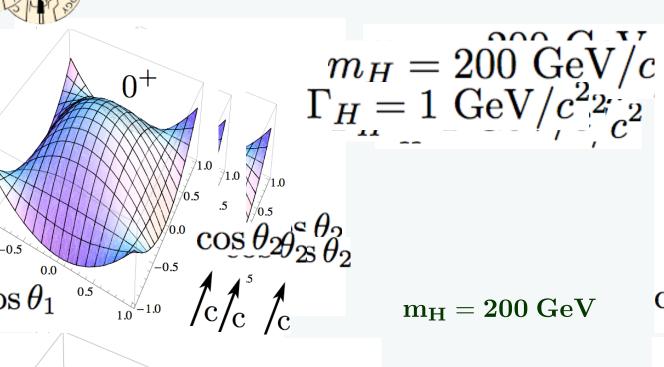

• Twenty-year-old common wisdom says that therefore we should ignore these angles as well

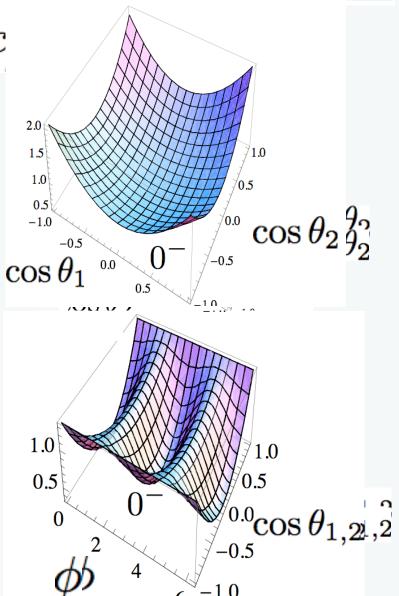
Is this reasonable?

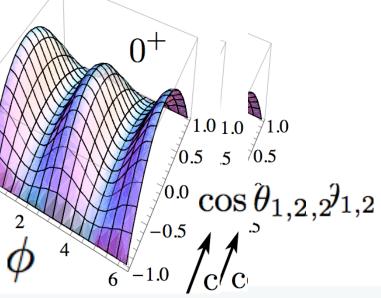

No!

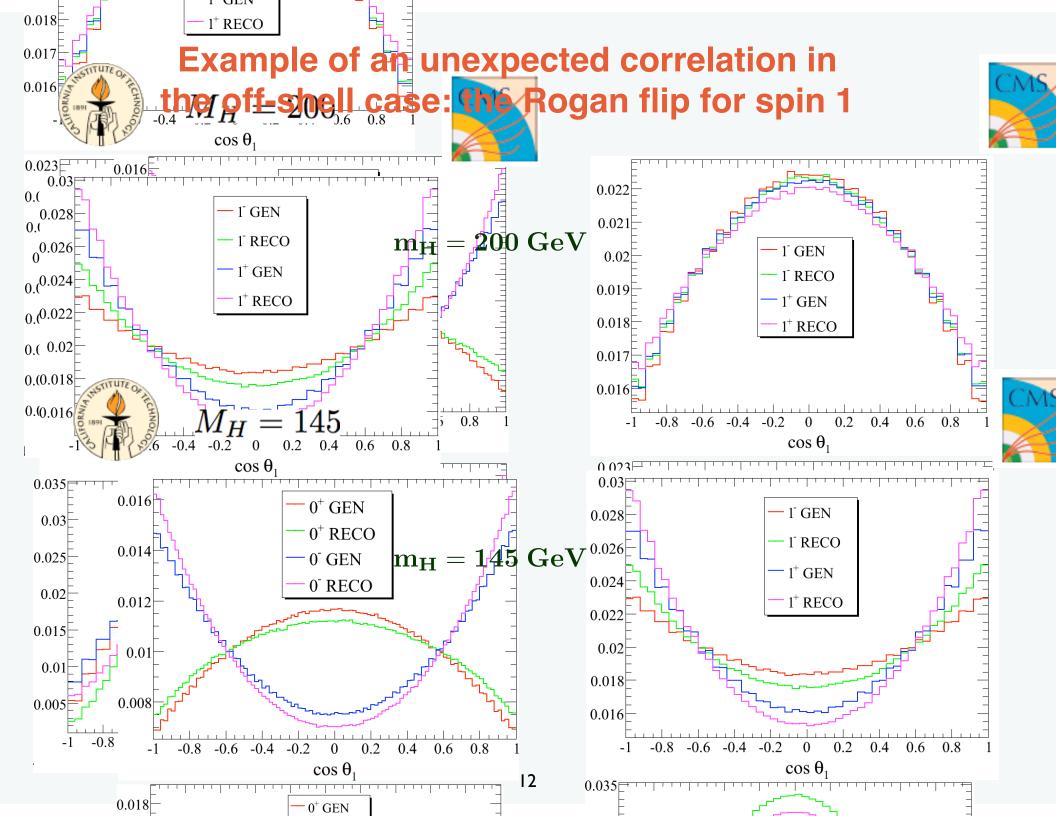
- If we want to test that the Higgs is a Higgs, and not a higher spin look-alike, then we should use the $\mathbf{h}\to\mathbf{Z}\mathbf{Z}$ angles $\Theta,\ \Phi$ as discriminators
- Furthermore, even for the spin 0 case, it is NOT TRUE that the distributions are flat in these angles, after we take into account realistic detector effects:

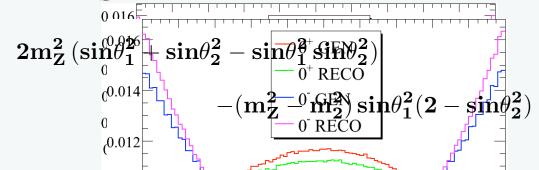
Detector phase space sculpting is important


• They create non-frib $M_H=145$ flat ones, create $M_H=145$ parton-level distributions






Correlations are important


Example of an unexpected correlation in the off-shell case: the Rogan flip for spin 1

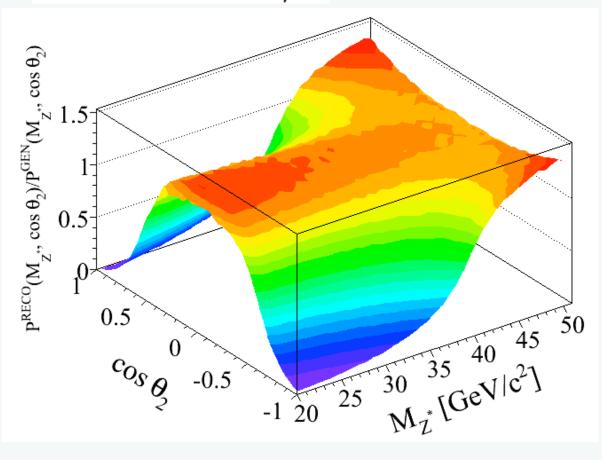
but if one Z is on shell and the other is far off shell, it is more appropriate to write the above as:

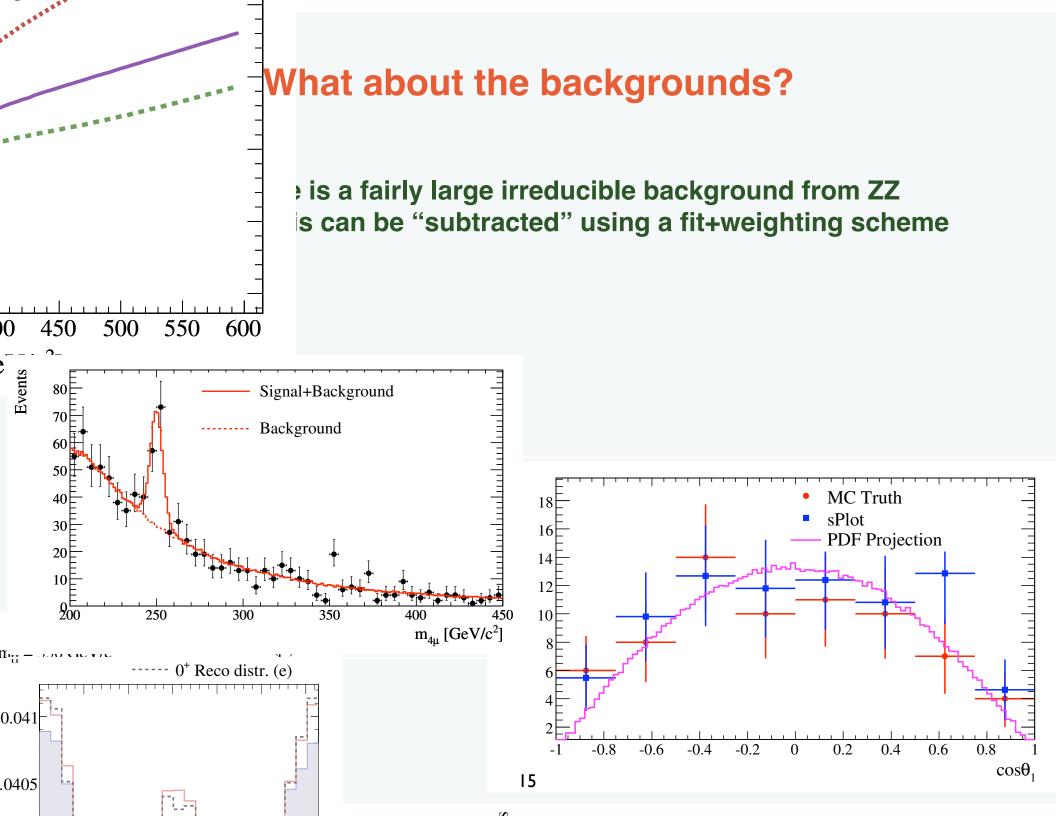
• for m2 < 49 GeV the negative piece wins and you get the Rogan flip

0⁺ GEN

0.4

-0.8 -0.6 -0.4 -0.2


0.018 -



 $m_{
m H}=200~{
m GeV}$

Phase space sculpting also creates correlations

 $^{
m m}m_H=145~{
m GeV}/c^2$ flating this constant

General couplings of Higgs Look-alikes to ZZ

- Allow couplings up to dimension 6
- Allow spin 0, 1, 2, and all possible C and P
- Note includes derivative couplings as would occur e.g. from expanding the form factor of a composite spin 0

$$\mathbf{L}_{\mu\nu}^{\mathbf{0}} = \mathbf{X}\,\mathbf{g}_{\mu\nu} - (\mathbf{Y} + \mathbf{i}\mathbf{Z})\frac{\mathbf{p}_{\mu}^{\mathbf{h}}\mathbf{p}_{\nu}^{\mathbf{h}}}{\mathbf{M}_{\mathbf{Z}}^{2}} + (\mathbf{P} + \mathbf{i}\mathbf{Q})\epsilon_{\mu\nu\rho\sigma}\frac{\mathbf{p}_{\mathbf{1}}^{\rho}\mathbf{p}_{\mathbf{2}}^{\sigma}}{\mathbf{M}_{\mathbf{Z}}^{2}}$$

$$\mathbf{L}_{\mathbf{1}}^{\mu\nu\rho} = \mathbf{X}(\mathbf{g}^{\mu\nu}\mathbf{p}_{\mathbf{1}}^{\rho} + \mathbf{g}^{\mu\rho}\mathbf{p}_{\mathbf{2}}^{\nu}) + (\mathbf{P} + \mathbf{i}\mathbf{Q})\epsilon_{\rho\sigma}^{\mu\nu}(\mathbf{p}_{\mathbf{1}}^{\sigma} - \mathbf{p}_{\mathbf{2}}^{\sigma})$$

$$\begin{split} \mathbf{L}_{\mathbf{2}}^{\mu\nu\rho\sigma} &= \mathbf{M}_{\mathbf{h}}^{\mathbf{2}} \, \mathbf{X}_{\mathbf{0}} \, \mathbf{g}^{\mu\rho} \mathbf{g}^{\nu\sigma} + (\mathbf{X}_{\mathbf{1}} + \mathbf{i} \mathbf{Y}_{\mathbf{1}}) (\mathbf{p}_{\mathbf{1}}^{\nu} \mathbf{p}_{\mathbf{2}}^{\rho} \mathbf{g}^{\sigma\mu} + \mathbf{p}_{\mathbf{2}}^{\mu} \mathbf{p}_{\mathbf{1}}^{\rho} \mathbf{g}^{\sigma\nu}) \\ &+ (\mathbf{X}_{\mathbf{2}} + \mathbf{i} \mathbf{Y}_{\mathbf{2}}) \mathbf{g}^{\mu\nu} \mathbf{p}_{\mathbf{1}}^{\rho} \mathbf{p}_{\mathbf{2}}^{\sigma} + (\mathbf{P} + \mathbf{i} \mathbf{Q}) \epsilon_{\alpha}^{\rho\mu\nu} (\mathbf{p}_{\mathbf{1}}^{\alpha} \mathbf{p}_{\mathbf{2}}^{\sigma} - \mathbf{p}_{\mathbf{2}}^{\alpha} \mathbf{p}_{\mathbf{1}}^{\sigma}) \end{split}$$

fully-differential decay widths

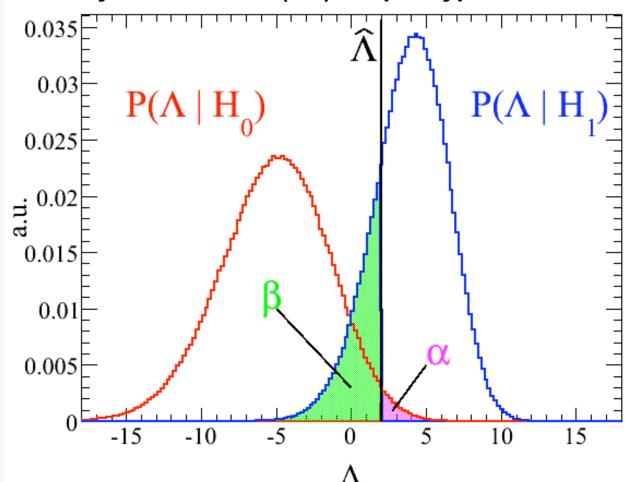
SM Higgs

$$\frac{d\Gamma[0^+]}{dc_1 dc_2 d\phi} \propto m_1^2 m_2^2 m_H^4 \left[1 + c_1^2 c_2^2 + (\gamma_b^2 + c^2) s_1^2 s_2^2 + 2\gamma_a c s_1 s_2 c_1 c_2 + 2\eta^2 (c_1 c_2 + \gamma_a c s_1 s_2) \right].$$
(14)

pure 1-

$$4m_1^2m_2^2X^2\gamma_b^2 \left[g_1S^2s_1^2s_2^2\left(2\ell_0^2m_d^4 - \ell^2m_H^2\left[m_1^2\cos(2\varphi_1) + m_2^2\cos(2\varphi_2)\right]\right) + g_1\ell^2m_H^2(1+C^2)\left[2m_2^2s_1^2 + 2m_1^2s_2^2 - (m_1^2 + m_2^2)s_1^2s_2^2\right] + 4\ell\ell_0g_1m_Hm_d^2CS\left[m_1c_1s_1s_2^2\sin\varphi_1 - m_2c_2s_2s_1^2\sin\varphi_2\right] - 2\ell^2m_H^2m_1m_2s_1s_2\left((1+C^2)(g_1c_1c_2 - g_{\sigma\sigma})\cos(\varphi_1 - \varphi_2) + S^2(g_1c_1c_2 + g_{\sigma\sigma})\cos(\varphi_1 + \varphi_2)\right)\right].$$

• pure 1+


Note for spin 1 we symmetrized over the quark vs antiquark directions in the initial state

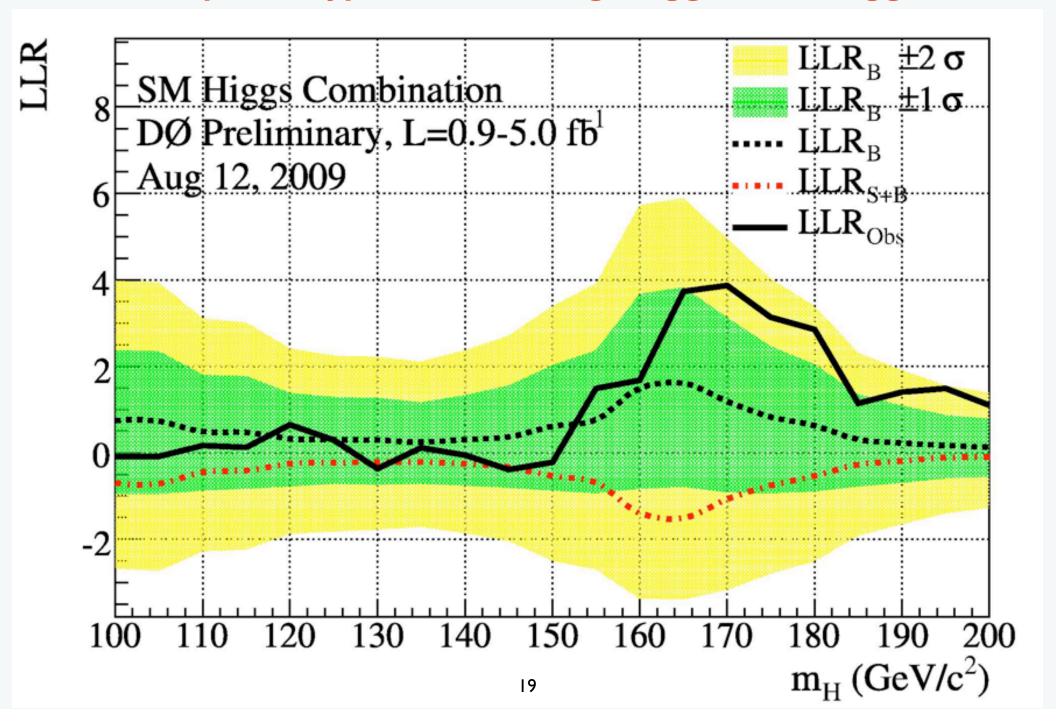
$$P^{2}\Big[\ell^{2}g_{1}m_{H}^{2}S^{2}s_{1}^{2}s_{2}^{2}\left[M_{2}^{4}m_{1}^{2}\cos(2\varphi_{1})+M_{1}^{4}m_{2}^{2}\cos(2\varphi_{2})\right]$$
 directions in the initial state
$$+8\ell_{0}^{2}m_{1}^{2}m_{2}^{2}m_{d}^{4}S^{2}\left[g_{1}\left(c_{1}^{2}+c_{2}^{2}+s_{1}^{2}s_{2}^{2}\sin(\varphi_{1}-\varphi_{2})^{2}\right)+2g_{\sigma\sigma}c_{1}c_{2}\right]\\+(1+C^{2})\ell^{2}g_{1}m_{H}^{2}\left[2M_{1}^{4}m_{2}^{2}s_{1}^{2}+2M_{2}^{4}m_{1}^{2}s_{2}^{2}-\left(M_{2}^{4}m_{1}^{2}+M_{1}^{4}m_{2}^{2}\right)s_{1}^{2}s_{2}^{2}\right]\\-8\ell\ell_{0}m_{H}m_{d}^{2}m_{1}m_{2}CS\left[M_{2}^{2}m_{1}s_{2}\left(g_{1}c_{2}s_{1}^{2}\sin\varphi_{1}\cos(\varphi_{1}-\varphi_{2})+c_{1}(g_{1}c_{1}c_{2}+g_{\sigma\sigma})\sin\varphi_{2}\right)\right.\\-M_{1}^{2}m_{2}s_{1}\left(g_{1}c_{1}s_{2}^{2}\sin\varphi_{2}\cos(\varphi_{1}-\varphi_{2})+c_{2}(g_{1}c_{1}c_{2}+g_{\sigma\sigma})\sin\varphi_{1}\right)\right]\\+2\ell^{2}m_{H}^{2}M_{1}^{2}M_{2}^{2}m_{1}m_{2}s_{1}s_{2}\left[(1+C^{2})(g_{1}c_{1}c_{2}-g_{\sigma\sigma})\cos(\varphi_{1}-\varphi_{2})-S^{2}(g_{1}c_{1}c_{2}+g_{\sigma\sigma})\cos(\varphi_{1}+\varphi_{2})\right]\right].$$

Hypothesis testing with likelihood ratios

$$H_0 = 0^ H_1 = 0^+$$
 $\Lambda = \log (\mathcal{L}_{0^+}/\mathcal{L}_{0^-})$

Neyman-Pearson (NP) simple hypothesis test

Risk of the 1st type:


$$lpha = \int_{\hat{\Lambda}}^{\infty} P(\Lambda|H_0) d\Lambda$$

Risk of the 2nd type:

$$\int_{-\infty}^{\hat{\Lambda}} P(\Lambda|H_1)d\Lambda = eta$$

Power of the test: $1-\beta$

Example of hypothesis testing: Higgs or no Higgs?

Example: 0+ vs. 0-

Consider the case when we are trying to distinguish between 0+ vs. 0- resonances:

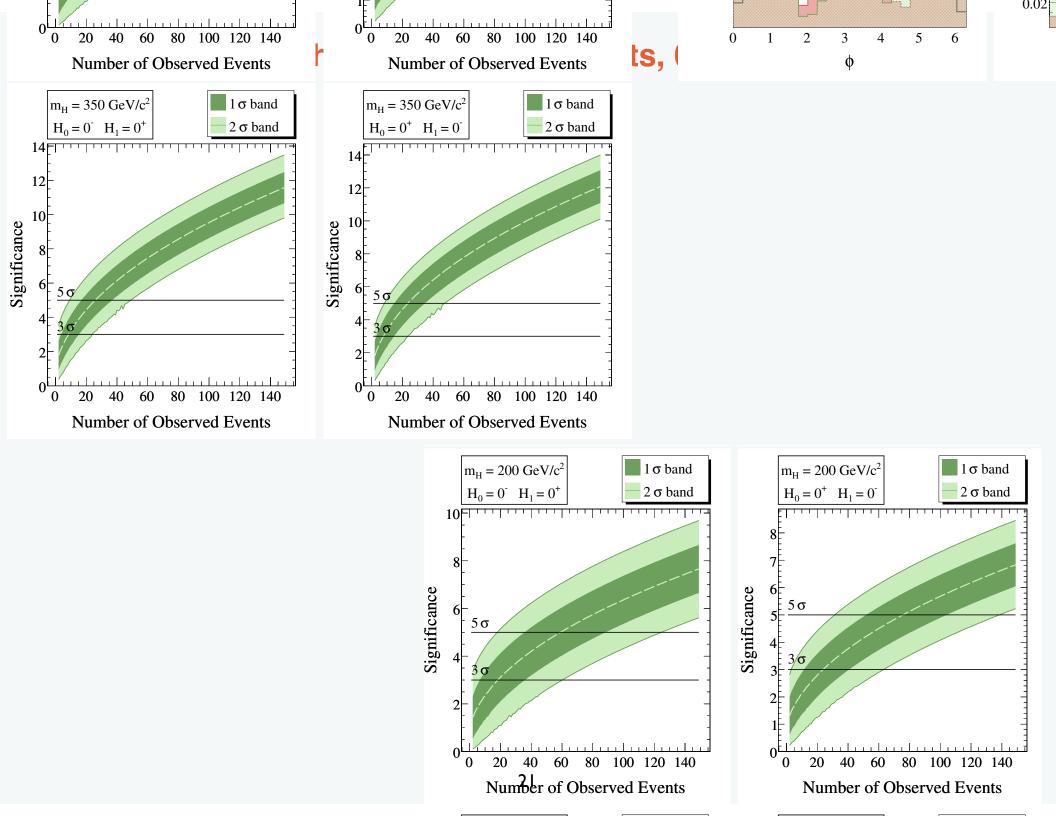
$$\gamma_a = rac{1}{2m_1m_2} \left[m_H^2 - m_1^2 - m_2^2
ight]$$

$$\cos \theta_i = c_i, \sin \varphi = s$$

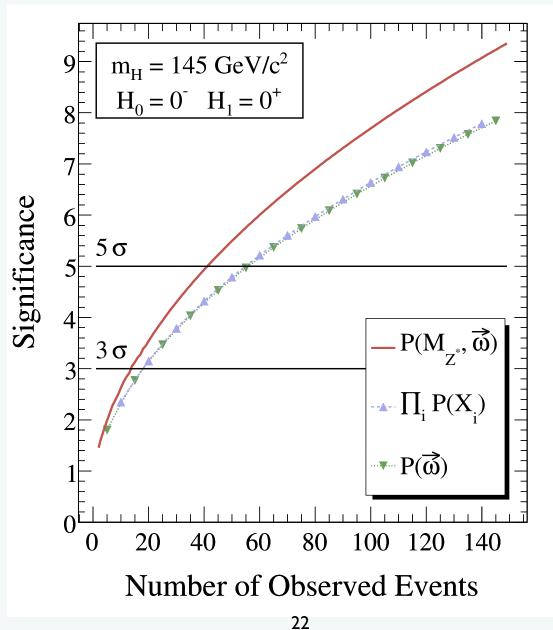
$$\eta \equiv \frac{2 c_v v_a}{(c_v^2 + c_a^2)} \approx 0.15$$

The standard Higgs, $J^{PC} = 0^{++}$

$$|\mathcal{M}[0^{+}]|^{2} \equiv \frac{d\Gamma[0^{+}]}{dc_{1} dc_{2} d\varphi} \propto m_{1}^{2} m_{2}^{2}$$


$$\{2 (c_{1}c_{2} + c s_{1}s_{2}\gamma_{a}) \eta^{2} + s_{1}^{2}s_{2}^{2}\gamma_{a}^{2}$$

$$+ \frac{1}{2} [(2 c^{2} - 1) s_{1}^{2}s_{2}^{2} + (c_{1}^{2} + 1) (c_{2}^{2} + 1)]$$


$$+ 2 c c_{1}c_{2}s_{1}s_{2}\gamma_{a}\}$$

A pure pseudoscalar, $J^{PC} = 0^{-+}$

$$|\mathcal{M}[0^-]|^2 \equiv rac{d\Gamma[0^-]}{dc_1\,dc_2\,darphi} \propto m_1^4\,m_2^4\,\gamma_b^2 \ ig(c_1^2c_2^2 + 2\,\eta^2\,c_1c_2 - c^2s_1^2s_2^2 + 1ig)$$

What happens if you ignore the correlations or ignore one of the discriminating variables?

XP

0+ versus a little bit of mixed CP

$$\mathcal{L}_{\mu\alpha} \propto \cos(\xi_{XP}) g_{\mu\alpha} + \sin(\xi_{XP}) \epsilon_{\mu\alpha} p_1 p_2 / M_Z^2$$

how small an admixture can I exclude when in fact it is an SM Higgs?

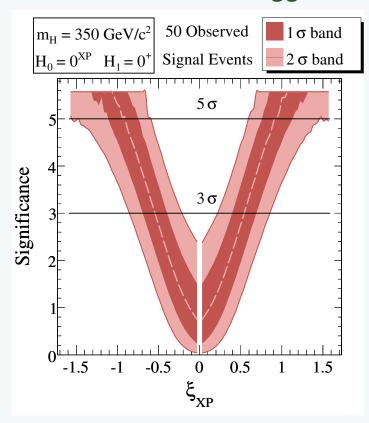
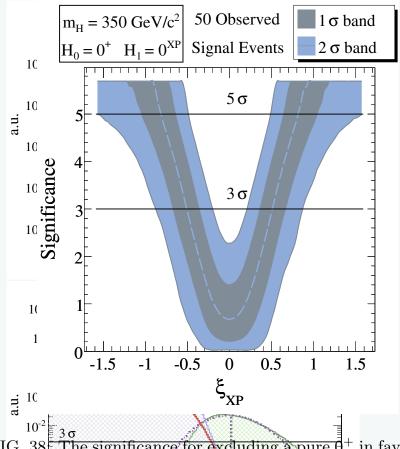
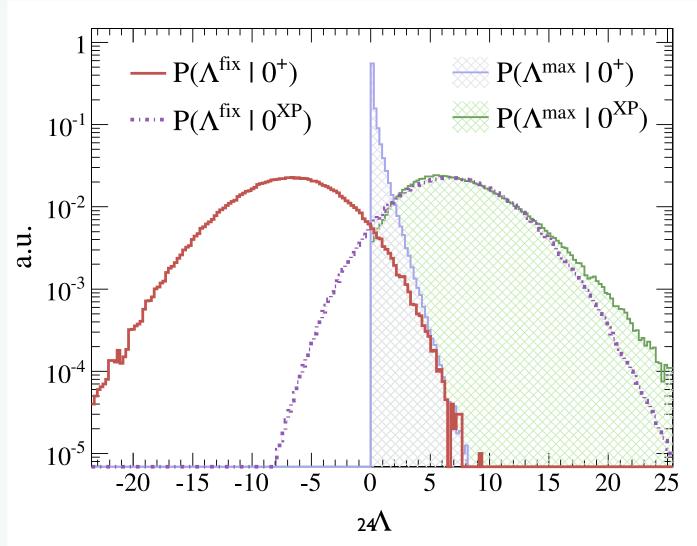


FIG. 37: Significance for excluding values of ξ_{XP} in the CP-violating J=0 hypothesis in favor of the 0^+ one, assumed to be correct, for $m_H=350~{\rm GeV/c^2}$ and $N_S=50$. The dashed line corresponds to the median of the significance. The 1 and $2\,\sigma$ bands correspond to 68% and 95% confidence intervals 23 centered on the median value.

how large does the admixture have to be before I will be able to exclude the SM?



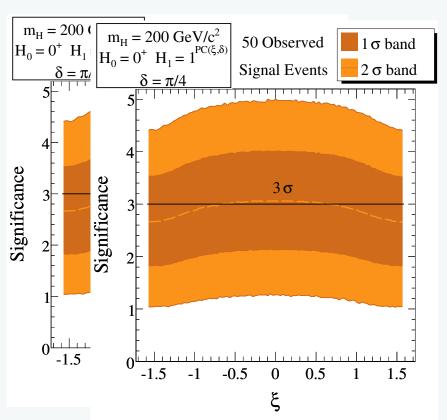

FIG. 38 The significance for excluding a pure 0^+ in favor of a CP-violating HZZ coupling ($\xi_{XP} \neq 0$), assuming the latter to be otherwise, with ξ_{XP} given by its x-axis values. Example for $N_{10} = 50$, $m_H = 350$ GeV/c². Dashed line and bands as in Fig. 37. -20 -15 -10 -5 0 5 10 15 20 25

0+ versus a little bit of mixed CP

$$\mathcal{L}_{\mu\alpha} \propto \cos(\xi_{XP}) g_{\mu\alpha} + \sin(\xi_{XP}) \epsilon_{\mu\alpha} p_1 p_2 / M_Z^2$$

how small an admixture can I exclude when in fact it is an SM Higgs?

how large does the admixture have to be before I will be able to exclude the SM?


0+ versus any possible spin 1 look-alike

$$\mathcal{L}^{\rho\mu\alpha} \propto \cos\xi \left(g^{\rho\mu}p_1^{\alpha} + g^{\rho\alpha}p_2^{\mu}\right) + e^{i\delta}\sin\xi \,\epsilon^{\rho\mu\alpha}(p_1 - p_2)$$

how well do I exclude arbitrary spin 1 when in fact I have a SM Higgs?

how well do I exclude an SM Higgs when in fact I have some arbitrary spin 1?

for SM Higgs masses (145, 200, 350) GeV we can exclude the general spin 1 hypothesis at 5 sigma with (60, 200, 85) signal events

discriminating Higgs look-alikes at the moment of discovery

 number of signal events required for (median expected) 3 sigma discrimination:

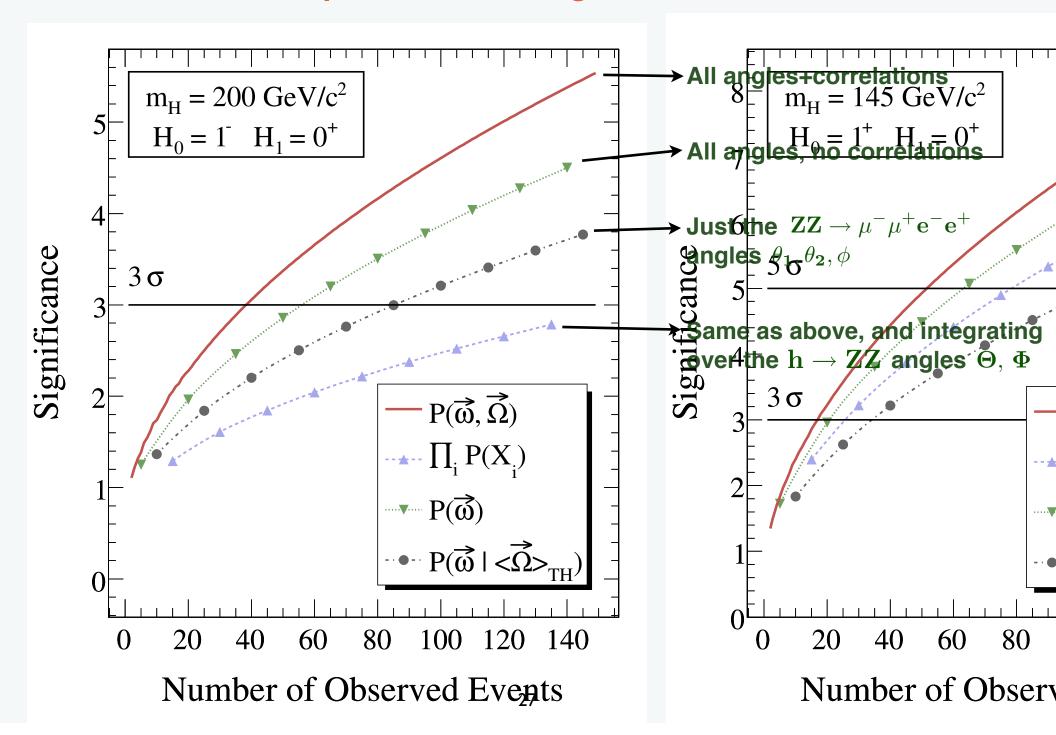

$\boxed{\mathbb{H}_0 \Downarrow \mathbb{H}_1 \Rightarrow}$	0+	0-	1-	1+
0+	_	17	12	16
0-	14	_	11	17
1-	11	11	_	35
1+	17	18	34	-

TABLE I: Minimum number of observed events such that the median significance for rejecting \mathbb{H}_0 in favor of the hypothesis \mathbb{H}_1 (assuming \mathbb{H}_1 is right) exceeds 3σ with $m_H=145~\mathrm{GeV/c^2}$.

$\boxed{\mathbb{H}_0 \Downarrow \mathbb{H}_1 \Rightarrow}$	0+	0-	1-	1+	2^+
0+	_	24	45	62	86
0-	19	_	19	19	38
1-	40	18	_	90	48
1+	56	19	85		66
2+	86	45	54	70	_

TABLE III: Minimum number of observed events such that the median significance for rejecting \mathbb{H}_0 in favor of the hypothesis \mathbb{H}_1 (assuming \mathbb{H}_1 is right) exceeds 3σ with m_H =200 GeV/c².

The importance of using all the information

Higgs electroweak look-alikes

- see talk by lan Low
- OK so you discovered a neutral resonance and used the first 20 events in the ZZ golden mode to exclude higher spins, large CP admixtures, etc.
- But is this particle the SM Higgs of electroweak symmetry breaking?
- Can we pin down the electroweak properties of the neutral resonance by measuring its branching fractions into electroweak vector bosons?

$$\mathbf{h} \to \mathbf{W}^+ \mathbf{W}^-, \ \mathbf{ZZ}, \ \gamma \gamma, \ \mathbf{Z} \gamma$$

- what look-alikes should we worry about?
- do we need to measure all four branching fractions?

Higgs electroweak look-alikes

$$\mathbf{h} \to \mathbf{W}^+ \mathbf{W}^-, \ \mathbf{ZZ}, \ \gamma \gamma, \ \mathbf{Z} \gamma$$

- Can do a general analysis making one additional assumption: the look-alike electroweak sector still respects custodial symmetry
- Thus the only look-alikes we have to worry about transform like some $(N_L,\ N_R)$ under the global $SU(2)_L \times SU(2)_R$ of which custodial $SU(2)_C$ is the diagonal remnant after EWSB

what look-alikes should we worry about?

$$\mathbf{h} \to \mathbf{W}^+ \mathbf{W}^-, \ \mathbf{ZZ}, \ \gamma \gamma, \ \mathbf{Z} \gamma$$

- $(\mathbf{1_L},\ \mathbf{1_R})$ an electroweak singlet with dimension 5 couplings to VV
- $(\mathbf{2_L},\ \mathbf{2_R})$ the SM case
- $(3_L, 3_R)$ the custodial symmetry preserving combination of a real and a complex $SU(2)_L$ triplet
- $(4_L, 4_R)$ some weird thing nobody bothers to talk about

In the last three cases we have dimension 4 couplings to WW and ZZ

$$g_{h_1^0 WW} = g_{h_1^0 ZZ} c_w^2 = \sqrt{\frac{N^2 - 1}{3}} g m_W$$

do we need to measure all four branching fractions?

$$\mathbf{h} \to \mathbf{W}^+ \mathbf{W}^-, \ \mathbf{ZZ}, \ \gamma \gamma, \ \mathbf{Z} \gamma$$

Yes

$m_S ext{ (GeV)}$	$Br(\gamma\gamma/WW)$	Br(ZZ/WW)	$Br(Z\gamma/WW)$
115	$2.7 \times 10^{-2} \ (2.7 \times 10^{-2})$	$5.1 \times 10^{-2} \ (0.11)$	$39 (9.0 \times 10^{-3})$
120	$1.7 \times 10^{-2} \ (1.7 \times 10^{-2})$	$5.7 \times 10^{-2} \ (0.11)$	$35 (8.2 \times 10^{-3})$
130	$7.8 \times 10^{-3} \ (7.8 \times 10^{-3})$	$6.7 \times 10^{-2} \ (0.13)$	$26 (6.7 \times 10^{-3})$
140	$4.0 \times 10^{-3} \ (4.0 \times 10^{-3})$	$7.1 \times 10^{-2} \ (0.14)$	$18 (5.1 \times 10^{-3})$
150	$2.0 \times 10^{-3} \ (2.0 \times 10^{-3})$	$6.4 \times 10^{-2} \ (0.12)$	$10 \ (3.5 \times 10^{-3})$
170	$1.6 \times 10^{-4} \ (1.6 \times 10^{-4})$	$1.4 \times 10^{-2} \ (2.3 \times 10^{-2})$	$0.81 \ (4.1 \times 10^{-4})$

TABLE II: Ratios of branching fractions for an electroweak singlet scalar when $Br(\gamma\gamma/WW)$ is tuned to the SM value. The value in the parenthesis is for the corresponding SM prediction.

Conclusion

- The LHC will (we hope) discover Higgs-like resonances
- We have powerful tools to figure out the identity of what we find
- Most of this does not require 1000 fb-1 or an ILC, but it will require
 - more work to get ready
 - multi-channel searches
 - some cooperation from Nature